首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85544篇
  免费   7106篇
  国内免费   3733篇
电工技术   3112篇
技术理论   5篇
综合类   6577篇
化学工业   17768篇
金属工艺   8648篇
机械仪表   5439篇
建筑科学   6296篇
矿业工程   3100篇
能源动力   2045篇
轻工业   7101篇
水利工程   1412篇
石油天然气   3974篇
武器工业   676篇
无线电   3872篇
一般工业技术   7277篇
冶金工业   9105篇
原子能技术   519篇
自动化技术   9457篇
  2024年   156篇
  2023年   922篇
  2022年   1887篇
  2021年   2276篇
  2020年   2493篇
  2019年   1932篇
  2018年   1644篇
  2017年   2213篇
  2016年   2703篇
  2015年   2865篇
  2014年   5156篇
  2013年   5308篇
  2012年   6301篇
  2011年   6597篇
  2010年   4924篇
  2009年   5013篇
  2008年   4243篇
  2007年   5609篇
  2006年   5341篇
  2005年   4529篇
  2004年   3899篇
  2003年   3507篇
  2002年   3040篇
  2001年   2661篇
  2000年   2221篇
  1999年   1816篇
  1998年   1428篇
  1997年   1102篇
  1996年   1003篇
  1995年   802篇
  1994年   674篇
  1993年   440篇
  1992年   384篇
  1991年   302篇
  1990年   210篇
  1989年   175篇
  1988年   123篇
  1987年   77篇
  1986年   67篇
  1985年   49篇
  1984年   46篇
  1983年   36篇
  1982年   28篇
  1981年   20篇
  1980年   28篇
  1979年   13篇
  1977年   14篇
  1964年   9篇
  1961年   9篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 194 毫秒
41.
Large-scale strongly nonlinear and nonconvex mixed-integer nonlinear programming (MINLP) models frequently appear in optimization-based process synthesis, integration, intensification, and process control. However, they are usually difficult to solve by existing algorithms within acceptable time. In this study, we propose two robust homotopy continuation enhanced branch and bound (HCBB) algorithms (denoted as HCBB-FP and HCBB-RB) where the homotopy continuation method is employed to gradually approach the optimum of the NLP subproblem at a node from the solution at its parent node. A variable step length is adapted to effectively balance feasibility and computational efficiency. The computational results from solving four existing process synthesis problems demonstrate that the proposed HCBB algorithms can find the same optimal solution from different initial points, while the existing MINLP algorithms fail or find much worse solutions. In addition, HCBB-RB is superior to HCBB-FP due to much lower computational effort required for the same locally optimal solution.  相似文献   
42.
This study aims to investigate the effect of ultrasonic waveforms on the gas–liquid mass transfer process. For a given load power (P), continuous rectangular wave yielded stronger bubble oscillation and higher mass transfer coefficient (kLa) than continuous triangular and sinusoidal wave. For pulsed ultrasound, the kLa decreased monotonically with decreasing duty ratio (D), resulting in weak enhancement at low D (≤33%). For a given average load power (PA), concentrating the P for a shorter period resulted in a higher kLa due to stronger cavitation behavior. For a given PA and D, decreasing the pulse period (T) led to an increase in kLa, which reached a constant high level when the T fell below a critical value. By optimizing the D and T, a kLa equivalent to 92% of that under continuous ultrasound was obtained under pulsed ultrasound at a D of 67%, saving 33% in power consumption.  相似文献   
43.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
44.
Self-adaptive surface measurements that can reduce data redundancy and improve time efficiency are in high demand in many fields of science and technology. For this purpose, a system implemented with Gaussian process (GP) adaptive sampling is developed. The non-parametric GP model is applied to reconstruct the topography and guide the subsequent sampling position, which is determined from the inference uncertainty estimation. A criterion is proposed to terminate the GP adaptive measurement automatically without any prior model or data of the topography. Experiments on typical surfaces validate the intelligence, adaptability, and high accuracy of the GP method along with the stabilization of the automatic iteration termination. Compared with traditional raster sampling, data redundancy is reduced and the time efficiency is improved without sacrificing the surface reconstruction accuracy. The proposed method can be implemented in other systems with similar measurement principles, thus benefitting surface characterizations.  相似文献   
45.
Since its first introduction in 2016, cold sintering process (CSP) has gained worldwide interest from the scientific community as green and innovative fabrication route due to the dramatic reduction of processing time, energy, and costs. Cold sintering resembles the geological formation of rocks where a ceramic powder is densified with the aid of a liquid phase under an intense external pressure and limited heating conditions (below 350 °C). Up to date, tens of different materials, including composites, have been successfully processed through CSP and extraordinary results in terms of densification, microstructure and final properties have been achieved. In the present review, processing features and variables, possible densification mechanisms and issues also for the realization of ceramic-based composites are explored. Advantages with respect to existing techniques are analysed and current challenges are described to lay the ground for new processing opportunities to be faced in the near future.  相似文献   
46.
《Ceramics International》2021,47(23):32648-32656
In this study, the effects of different water amounts, CO2 blowing pressures, Na2O:SiO2 and K2O:SiO2 ratios were studied on the bonding strength of Na2SiO3 and K2SiO3 binders. It was concluded that the increase in water content had an adverse effect on the bonding strength of CO2-hardened Na2SiO3 sand. The blowing pressure did not have a linear relationship with the bonding strength, but it was closely related to the diffusion coefficient of CO2. Based on scanning electron microscopic results, it was inferred that the low strength was caused by the formation of lamellar crystals after the adhesive was hardened. It was found that the low strength was caused by the formation of lamellar crystals after the adhesive was hardened. Based on molecular dynamics simulations, different pressures and water contents had a great influence on the diffusion coefficient of CO2 in the silicate binder system. This research provides an important theoretical background to improve the technology of CO2-hardened Na2SiO3- and K2SiO3-bonded sands during the casting process.  相似文献   
47.
Understanding the spheroidization process of micron-scaled α-Al2O3 powder in hydrothermal method is of great importance but still not completely revealed. The results demonstrated that SO42? played a significant role in the formation of spherical powder, while the bubble generated from the reaction of urea didn't work in the spheroidization process. The spheroidization process was summed up as two steps. The first was that SO42? limited the hydrolysis of Al3+ and reacted with Al3+ and OH- to form Al4(OH)10SO4, which nucleated and agglomerated into granular precipitates. The second was Ostwald ripening, which gave the spherical precursors a double-layered structure. When the spherical precursors obtained 120 °C were sintered at 1200 °C, α-Al2O3 were got and the spherical morphology still maintained with a large number of nano-sized pores. We anticipate the spherical α-Al2O3 with nano-sized pores can be applied in adsorption and filtration industries.  相似文献   
48.
In this paper, Zn-doped VO2 nanoparticles have been successfully fabricated by a two-step hydrothermal-annealing process, and the thermally induced visible light transmittance enhancement of Zn-doped VO2 has been studied for the first time. It is found that Zn-doped VO2 not only exhibits excellent solar modulation ability (ΔTsol = 15.27%) but also can reduce the phase transition temperature and increase the visible light transmittance after the heat-induced phase transition (ΔTlum=+5.78%). Moreover, with the increase of Zn doping concentration, the phase transition temperature (Tc) and phase transition hysteresis (ΔT) both decrease. It is shown that the Zn-doped VO2-PU films not only have good solar light modulation ability and properties of improving visible light transmission after phase transition, but also have good durability. The research result is of great significance for improving the visible light transmittance after phase transition and realizing the practical application of VO2 in the field of smart windows.  相似文献   
49.
《Ceramics International》2022,48(13):18676-18686
A high content of quartz is usually present in Australian gibbsite-boehmite bauxite. The reaction between quartz and sodium aluminate solution at high temperatures in the Bayer process can lead to loss of alumina and sodium oxide. Therefore, to improve alumina recovery, the reaction of quartz needs to be avoided. The digestion behavior of Australian gibbsite-boehmite bauxite and pure quartz in the Bayer process at 230–250 °C was systematically studied in this paper. The mineral composition and morphology of the reaction products were characterized and the kinetics of the quartz dissolution process was studied in detail. It was shown that boehmite in gibbsite-boehmite bauxite can be completely digested at high temperature (250 °C) with a short digestion time (5 min). A short digestion time results in a low reaction rate of quartz in bauxite, and is ideal for alumina recovery at high temperatures. The quartz reaction rate rapidly increases with longer digestion times. The apparent activation energy of the dissolution of quartz in bauxite in the caustic solution is 151.9 kJ mol?1, and the rate-controlling step of this reaction process is the interfacial chemical reaction. By controlling the particle size of bauxite, the digestion temperature, and the digestion time, the reaction rate of quartz in bauxite can be inhibited, which is beneficial for improving alumina recovery and reducing caustic consumption. Therefore, based on the above theoretical research, a process for digesting gibbsite-boehmite bauxite is proposed using high digestion temperature (250 °C), short digestion time (5 min) and large mineral size. An economic benefit of about US$101.9 million for a refinery with the annual output of 2 million tons of alumina can be created by the proposed process.  相似文献   
50.
This paper presents a physics-based compact gate delay model that includes all short-channel phenomena prevalent at the ultra-deep submicron technology node of 32 nm. To simplify calculations, the proposed model is connected to a compact α-power law-based (Sakurai-Newton) model. The model has been tested on a wide range of supply voltages. The model accurately predicts nominal delays and the delays under process variations. It has been shown that at lower technology nodes, the delay is more sensitive to threshold voltage variations, specifically at the sub-threshold operating region as compared with effective channel length variations above the threshold region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号